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Abstract. In this paper, we study how to encode the at-most-one (AMO)
constraint in conjunctive normal form (CNF). The AMO constraint means
that at most one out of n propositional variables is allowed to be true.
We present a new AMO encoding that improves on the existing one.
The logarithmic bitwise AMO encoding by Frisch et al. requires logn
auxiliary variables and nlogn clauses. Sinz’s sequential AMO encoding
requires n — 1 auxiliary variables and 3n — 4 clauses. Our recursive 2-
product AMO encoding requires 2y/n + O({/n) auxiliary variables and
2n + 4v/n + O(/n) clauses, which is fewer than the known best one. In
terms of total number of literals appearing in the clauses, our encoding
is the best, since it requires 4n + 8y/n + O(/n) literals, while Sinz’s en-
coding and the logarithmic bitwise AMO encoding do 6n—8 and 2n logn
literals, respectively.

Keywords: SAT encoding, At-Most-One constraint, encoding complex-
ity.

1 Introduction

The at-most-one (AMO) constraint is a special case of cardinality constraints,
which expresses that at most one out of n Boolean variables is allowed to be true.
Because in recent years SAT solvers have made tremendous progress, many real-
world problems are solved by encoding them in conjunctive normal form (CNF),
i.e., converting to SAT problems, for example, EDA, artificial intelligence, crypt-
analysis, planning, equivalence checking etc. Encoding a problem in CNF is called
SAT Encoding also. SAT Encodings of many real-world problems require often
an encoding of the AMO constraint. For example, the encodings of cardinality
constraints [2], planning [2], partial Max-SAT [3] and Mixed Horn Formulas [4]
make use of an AMO encoding. Therefore, devising a good AMO encoding is
very important.

Let X = {x1, 22, ...,2,}. The standard SAT encoding of the AMO constraint
is the following.

AMO(X) = {z; VTj|z;,z; € X,i < j}



This AMO encoding requires n(n—1)/2 clauses. This is not an effective encoding,

since it uses very many clauses. To reduce the number of clauses, based on

sequential counters of the cardinality 1 + 2+ -+, < 1, Sinz [1] introduced

an AMO encoding as follows.

AMO(X) = (Z1Vai) A (ﬁvm)1 A (@i Vai) AN(@=1Va) ATV ai-r))
<r<n

where a;(1 < i < n) are auxiliary variables. In general, such an encoding is

called the sequential encoding of AMO. The basic idea of this encoding is to
build sequentially a count-and-compare hardware circuit and then translate the
circuit to CNF. It is easy to see that this encoding requires 3n — 4 clauses and
n—1 auxiliary variables. In terms of number of auxiliary variables, this encoding
is not optimal.

An encoding that uses fewer auxiliary variables is the logarithmic bitwise
AMO encoding due to Frisch et al. [5, 6]. This encoding consists of the following
clauses.

T; Vay [oray ]

if bit k of the binary representation of i—1is 1 [or 0], wherei =1,2,...,n,k =
1,2,...,[logn]. Clearly, this encoding requires logn auxiliary variables and
nlogn clauses. Prestwich [2] used the logarithmic bitwise AMO encoding to
remodel two problems: parity learning and Towers of Hanoi as STRIPS plan-
ning, and solved successfully them using a standard SAT local search algorithm.
Although the logarithmic bitwise AMO encoding requires fewer auxiliary vari-
ables, it does require more clauses than the sequential encoding.

The paper presents a new SAT encoding of the AMO constraint that improves
on the existing result. This encoding is implemented in a Cartesian product form.
We consider n as an integer that is close to the product of two factors p and g,
and combine AMO encodings of p and ¢ variables into an AMO encoding of n
variables. If encoding each sub-condition in a recursive way, such a 2-product en-
coding requires 2v/n+ O(+/n) auxiliary variables and 2n+4+/n+ O(+/n) clauses,
which is fewer than the known best one. If we break down n into k parts, a 2-
product encoding can be generalized into a k-product encoding. Our k-product
encoding is not only of lower computation complexity, but also scalability. In
the rough sense, the logarithmic bitwise AMO encoding can be considered as
a special case of our k-product encoding. In addition, our k-product encoding
preserves still arc-consistency. That is, as soon as one variable among n variables
becomes true, unit propagation sets all other variables to false.

2 A new AMO encoding

Below we will present a new encoding of the Boolean at most one (AMO) con-
straint. Its basic principle is based on Cartesian products. That is, it uses a grid
with n points, one for each variable, and constrains at most one row and at
most one column to be selected, and the point at their intersection is the only
variable allowed to be true. In details, we break down n into two parts: p and
q. The product of p and ¢ is equal to or greater and closest to n. In general,



let p = [\/n],q = [n/p], where [x] denotes the rounding to the nearest inte-
ger that is greater than or equal to z. We make one point z; in one dimension
coordinate correspond to one point (u;,v;) in two dimension coordinate, where
zp € {x1,22,..., T}, u; € {ur1,u2,...,up} and v; € {v1,v2,...,v4}. In general,
we have pq > n. In this case, in order to ensure that our mapping is one-to-one,
we remove the extraneous grid points and select only n points from pg points.
Assuming n = (p —1)g+r and 1 < r < ¢, we select the n points (u;,v;) with
(i—1)g+j<n,1<i<pandl < j<gq.Forexample, if nis 5, thenp =3,q =2,
and x1,x2, T3, T4, 5 are mapped into (uq,v1), (u1,va), (ug, v1), (U2, va), (us, v1),
respectively. In such a mapping, the proposition “ at most one out of n points
T1,Ta,...,T, is true 7 is equivalent to the proposition “ at most one out of pq
points (u;,v;) is true”. Using the equivalent transform of this proposition, our
AMO encoding may be defined recursively as
1<k<n k=(i—1)q+j
AMO(X) = AMO(U) A AMO(V) N ((@k Vw) A (Tg V v5))
1<i<p,1<j<q

where X = {z1,22,...,2,}, U = {u1,ug,...,up},V = {v1,v2,...,04}, each
element u; in U and each element v; in V are auxiliary variables. AMO(U)
expresses that no more than one u; in U is true. And AMO(V) expresses that
no more than one v; in V' is true. Therefore, there is no more than one pair (u;, v;)
whose u; and v; both are true. Thus, the constraint condition (Tg Vu;) A (T V ;)
implies that no more than zj; is true. Because this encoding is done in the
product of 2 factors, we refer to such an encoding as the 2-product encoding of
the AMO constraint. The encoding of AMO(U) and AMO(V) can be done by
either a recursive or direct way. The direct way can be standard or sequential.
The following is an example of the 2-product encoding by using the standard
encoding to encode sub-constraints with n = 5.

Ezample 1. n =5. We break down n into p = 3,q = 2.
AMO(U) : (ur Vuz) A (ur V us) A (uz V us)
AMO(V) : (v1 V 12)
AMO(X) : (ur Vuz) A (ur Vag) A (az Vag) A (77 Voz)A
(ZTTVu) A(TT Vo)A (TzVur) ATz Vo) A (T3 Vug)A
(T3 V1) A (TzVu2) A(Tg Vo) A(Ts Vuz) A (Ts Vo)

If using the sequential encoding mentioned above to encode two sub-constraints,
based on the property of this encoding, it is not difficult to conclude that the
resulting 2-product AMO encoding encoding is of the minimal clauses. In such
a case, we have

Theorem 1. If using the sequential encoding to encode sub-constraints AMO(U)
and AMO(V), where U = {uy,ua,...,up}t, V = {v1,v2,...,04}, p = [V/n], and
q = [n/p], the 2-product encoding of AMO given above requires 2n + (3p — 4) +
(3¢ —4) = 2n+ 6+/n — 8 clauses and at most 4y/n auziliary variables. The total
number of literals appearing in the clauses is 4n + 12/n — 16.

This proof is trivial. When n is small, say n < 6, using the sequential en-
coding to encode sub-conditions is not a good choice. The resulting 2-product



encoding requires more clauses and more auxiliary variables than the sequential
encoding. Therefore, when n < 20, we suggest using the standard AMO encoding
mentioned above to encode sub-conditions. In such a case, we have

Theorem 2. If using the standard encoding to encode sub-constraints AMO(U)
and AMO(V), where U = {uy,ua,...,up}t, V= {v1,v2,...,04}, p = [V/n], and
q = [n/p] , the 2-product encoding of AMO given above requires 2n+p(p—1)/2+
q(q—1)/2 = 3n — \/n clauses and 2+/n auziliary variables. The total number of
literals appearing in the clauses is 6n — 24/n.

This proof is trivial also. It is easy to see that the 2-product encoding based on
the standard encoding requires fewer clauses and fewer auxiliary variables than
the sequential encoding. In fact, the recursive way is also a good approach to
reduce the number of clauses and auxiliary variables. The following is a theorem
on a recursive way.

Theorem 3. If encoding sub-constraints AMO(U) and AMO(V) in a recursive
way, where U = {uy,ug, ..., up},V ={v1,v2,...,04}, p= [v/n], and ¢ = [n/p],
the 2-product encoding of AMO given above requires 2n + 4/n+ O(¥/n) clauses
and 2v/n 4+ O(Y/n) auziliary variables.

Proof. Let f(n) be the number of clauses required to encode n variables. By the
property of this encoding, we have the following recurrence relation.
f(n) =2n+ f(p)+ f(q).
Since p & ¢ &~ \/n , this recurrence relation can be simplified into
F(n) = 20+ 2£(y/m).
By replacing repeatedly the recurrence term, we can obtain the following solution
fm)=2n+4y/n+8Yn+16Yn+------ =2n+4yn+ O(V/n).
Let g(n) be the number of auxiliary variables required to encode n variables.
Then we have
g(n) =p+q+9(p) +9(a)
Replacing p and ¢ with /n yields
g9(n) = 2yn+29(v/n).

The solution to the recurrence term is approximately 2v/n + O(/n). ad

By this theorem, it is easy to see that the recursive 2-product encoding
requires fewer clauses and fewer auxiliary variables than the previous 2-product
encoding based on the sequential encoding. When n is small, say n < 10, the
2-product encoding based on the standard encoding is better. Notice, all the
three 2-product encodings given above require more auxiliary variables than the
bitwise AMO encoding. To reduce the number of auxiliary variables, we can
extend the 2-product encoding to the k-product encoding. That is to say, we use
a k-dimension grid with n points, one for each variable, and constrain at most
one vertical plane at any coordinate axis to be selected, and the point at their
intersection is the only variable allowed to be true. In details, we break down n
into k parts: p1,p2,..., Pk, where p1 = ps = -+ = pr = /n. We make a point
in one dimension coordinate X = {z1,z,...,z,} correspond to a point in k



dimension coordinate Wy x Wa X ... x Wy, where W; = {wi, w}, ... ,w;i},i =
1,2,...,k. In order to ensure that the mapping is one-to-one, we remove the
extraneous grid points and select only n points from p; X ps X ... X pg points.
Each element in W; is considered as an auxiliary variable. Let p; = ps = --- =
pr = p = ¥n, the k-product encoding of AMO may be defined as

k
AMO(X) = /\ AMO(WZ) A map(X, Wl, WQ, ceay Wk),
i=1

i=
where map(X, Wi, Wa, ..., Wy) consists of the following clauses.
(T Vwt YA @ Vw2 )AL A (T Vwh )
iand a;(j =1,2,...,k) satisfy the following relation.
i= (a1 = )pF 4 (ag = DpF 2 + -+ (ap—1 — Dp + ag
I<i<n,1<a; <p
This has nk clauses in total. Notice, the 2-product encoding is a special case of
such an encoding. In the case of k = 2, if using the standard encoding to encode
sub-constraints, we have Theorem 2. In the case of k > 2, similarly we have

Theorem 4. If using the standard encoding to encode sub-constraints AMO(W,),
i=1,2,...,k, k > 2 and each p; is equal to p = /n the k-product encoding
of AMO given above requires nk + k/n({/n —1)/2 clauses and k{&/n auziliary
variables.

Proof. Let f(n) be the number of clauses required by the k-product encoding
to encode n variables, h(n) the number of clauses required by the standard
encoding. Then we have

f(n) =nk + h(p1) + h(p2) + - + h(pk).
substituting p = {/n for each p; yields

f(n) =nk + kh(p).
Encoding p variables by the standard encoding requires p(p — 1)/2, Therefore
we have

f(n)=nk+kplp—1)/2=nk+k¥n(¥n—-1)/2.
The number of auxiliary variables required to encode n variables is

p1+p2 A pE=kp=k{n. O

It is not difficult to see that the logarithmic bitwise AMO encoding [5] is a
special case of the k-product encoding, i.e., the case of k& = logn. From The-
orem 4, when k = logn , i.e. p = 2, the number of clauses required by the
k-product encoding is nlogn + logn, which is logn more than the logarithmic
bitwise AMO encoding [5]. This is because our W; consists of two variables w?
and w} , while the W; in [5] consists of only one variable. If we reduce W; to one
variable, the k-product encoding is totally consist with the logarithmic bitwise
AMO encoding. The k-product encoding has a significant advantage: it can trade
off the computation complexities of clauses and auxiliary variables. Depending
on various k, we can obtain encodings with different complexities. In terms of
running time, for different SAT solvers, what is the optimal value of k7 This
should rely on real applications.



3 Empirical evaluation

Table 1. The number of clauses and auxiliary variables required by using various AMO
encodings to encode AMO constraints of edge-matching problems.

2-product sequential bitwise standard
F#cls  #var| #cls Fvar| #cls Fvar| #cls Fvar
em_14_7_3_cmp|144,48,7|401|134548 8358136993 45798359781 2931|3073893
em_12.2_4_cmp|100,40 |280| 67280 5040| 68480 22920159200 1880|1052400
em_11.3.4 cmp|81,36 |234| 45252 3780| 46206 15480[107406 1566| 570240
em_9_.3.5_cmp |49,28 154| 18256 1988| 18494 6216| 36652 868| 136416
em_8.4.5_cmp |36,24 120| 10608 1344| 10752 3624| 21312 672| 58608

Instance n k

OO O OO

Table 2. Runtime (in seconds) required by CircleSAT to solve edge-matching problems
based on various AMO encodings.

Instance 2-product | sequential | bitwise | standard
em_14.7.3_cmp | 100.91 482.78 177.25 | 202.47
em_12.2 4 cmp | 252.19 143.61 158.23 | 486.69
em_11.3 4 cmp | 114.06 302.66 746.94 | 321.02
em_9.3_5_cmp 168.97 186.58 52.23 106.44

em_8_4_5_cmp 12.53 57.60 51.31 54.61
em_14_7_3_tbc 5.53 6.52 7.97 35.33
em_12_2_4 fbc 77.20 34.48 92.55 20.06
em-11_3_-4_fbc 18.08 68.70 8.28 12.84
em_9_3_5_fbc 23.69 13.39 22.88 75.84
em_8_4_5_fbc 54.66 17.48 55.33 66.91

Recently, Frisch and Giannaros [10] carried out evaluation experiments with
various encoding approaches, including 2-product AMO encoding, sequential
AMO encoding, bitwise AMO encoding, standard AMO encoding and comman-
der AMO encoding [11] etc. The instances tested are from the pigeonhole prob-
lem. In their experiments evaluating the performance of AMO encodings, the
2-product AMO encoding was the quickest [10].

Here we conducted another evaluation experiment. Unlike the instances used
by Frisch and Giannaros, the instances used by us are from edge-matching prob-
lems submitted by Heule to SAT 2009 competition [7]. This is a popular puzzles,
that traced back to 1890’s. Edge-matching problems are formulated as follows.
Given a set of pieces and a grid, the problem is whether we can place the pieces
on the grid such that the edges of the connected pieces match. It is proved to
be NP-complete.



Except for em_8_4_5_cmp and em_8_4_5_fbc, all the instances selected cannot
be solved by any solver in SAT 2009 competition [12]. To be able to solve easily
the instances, we decided to remodel them. The remodeling approach adopted
by us is to translate the implicit one-on-one mapping into the explicit one-on-one
mapping. Notice, the cmp and fbc family are encoded with the compact model,
i.e., the implicit model. Using the explicit model adds the redundant clauses and
requires more resource, but solve more easily the instance generated by it. We re-
modeled edge-matching problems using the following four different AMO encod-
ing approaches: 2-product encoding, sequential encoding [1], logarithmic bitwise
encoding [5] and standard encoding. The 2-product encoding here is Approach
2 given above (see Theorem 2), i.e., applying the standard encoding to encode
sub-constraints. Because n here is small, the performance of our Approaches 1,2
and 3 is almost the same. Our Approach 4 is the same as the logarithmic bitwise
encoding. Table 1 shows the performance of four different AMO encodings in
terms of number of auxiliary variables and number of clauses. Columns n and
k denote the number of variables in a constraint condition and the number of
AMO constraints, respectively. The first data (144, 48, 7) in Column n repre-
sent that the instance has 3 types of AMO constraints with n = 144, n = 48 and
n = 7. Columns #cls and #var denote the number of clauses and the number of
auxiliary variables required by an AMO encoding, respectively. Table 1 omitted
the result on the fbc family, since the cmp and fbc family have the same AMO
constraints. As shown in Table 1, the 2-product encoding requires the minimal
clauses, while the standard encoding does the maximal clauses. When the re-
source of memory is limited, the application of the standard encoding is limited
easily.

We carried out the performance evaluation in terms of runtime under such
a platform: Intel Core 2 Quad Q6600 CPU with speed of 2.40GHz and 2GB
memory. We used the same SAT solver to solve all the instances obtained by
various AMO encodings. With respect to the type of solvers, ours is the same as
that used in [10], but differs from that used in [2] and [5]. The SAT solvers used
in [2] and [5] both are based on on a local search. What we used is a revised
version of CircleSAT [9], which is a conflict-driven DPLL complete solver based
on PrecoSAT [8]. Table 2 shows the runtime required to solve each instance based
on various AMO encodings with CircleSAT (the maximal number of learned
clauses is limited to 150000). On average, the 2-product encoding was faster than
other encodings like sequential, bitwise, and standard. In details, the 2-product
encoding has six instances out of ten instances faster than sequential and bitwise,
and seven instances faster than standard. From this experimental result, we can
conclude that the solving speed depends not only on the effectiveness of the
SAT encoding, but also the heuristic strategy used by a SAT solver. When the
SAT encoding matches the heuristic strategy, the solving speed is certainly fast,
especially for satisfiable problems.



4 Conclusions

We have developed four versions for the AMO encoding, each of which is effective.
The version with the minimal clauses is the recursive 2-product encoding. This
encoding requires 2n+4y/n+ O(/n) clauses. Furthermore, using our encodings,
unit propagations achieves arc-consistency. Sinz [1] has pointed out that each
clausal encoding of the AMO condition requires at least n clauses. In this sense,
this 2-product encoding is also optimal. Furthermore, we conjecture that this
result has reached the best lower bound on the number of required clauses for
any AMO encoding. An interesting topic might be to prove that this is the
tightest lower bound. This will remain as an open problem.
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